HMI Peripheral board with LadderWORK

OBJECTIVE: MAKING YOUR HMI BOARD WORK WITH LADDERWORK®

ASSUMPTION:

v Board with LCD and minimum 8K ram is ready
v" Database File editor
v USASMS51 and USLIB for assembling and creating library respectively

PREPARATION:

v" Note down the connections for LCD

WRITTEN BY: AJAY BHARGAV

DATED: FEB10™, 2007

REVISION CODE: 1.0

This tutorial will provide you the basic information on How to make your HMI peripherals (e.g.
LCD, LED Display, 7-Seg LED etc) to work with your LadderWORK?® software.

Noter: In this tutorial we are using single character based LCD Display, so is not referred with a
terminal ID.

Note2: DBF editor you are going to use must support DBF III plus Files.

Stepl: Understand Hook functions

LadderWORK provide certain hook functions which are to be bind with user defined functions to
make user defined functions work with LadderWORK. As for now we are using LCD display, so
the hooks used for the LCD purpose are as follows:

e _ update

e _ locate

e _ put_asciiz_code
e _ put_asciiz_data
e _ putchar

The information regarding the above hook functions and all other hook functions can be found in
LadderWORK help under the following section

Advanced Technical Information » Generic 8051 Board Adapting » Panel & Keyboard handling
functions (HMI & MMI)

Now you have the information regarding the function which are to bind with the above
mentioned hook function lets move to step #2.

Note3: We will define a new LCDtest board for better explanation

Step 2: Adding your test Board in LadderWORK Device list

To add your LCD test board we will make use of DBF editor and edit the “devices.dbf” database
file in DAT folder.

We are not considering any other port or peripheral except the LCD.

W237E_GRIFO\DATSDEVICES DBF [View]

E Record \ﬁewofDE\'iI{E?Eii Formulas| Fields [Indexes| Hex '] :|u:| es X

= “ -« > » > - - 5 o & & =)
DEY_REFSYS DEY_CODE
LCOTEST| LCDTEST
DEY_DESCP
LCD Test
DEV_CPU DEV_TINY DEV AREAIL DEV AREATH DEV_AREAN DEV AREA2L DEV AREAZH DEV AREAA DEV AREAIL DEV AREA3H DEV_AREAZ
8051 0 1]
DEV_BLM DEV BLMEP DEV REMCNT DEV_CTRL DEV_ WATCH ADVSETTING LIBRARY 1 LIBRARY_2 LIBRARY_3 LIBRARY 4
i) 0000 3 1] 1 1 LCD
LIDNAMY_S LIDNANY_G ALTMLL 1 ALTILC_2 ALTMLC_2 ENMMN1_ACT

N
KRM1_FNAME KRN1_LOW KRAN1_HIGH KRM1_SEGM
KRM1_LABEL PIB_LACT PIB_TYPE PIB_HOTAD
N 0000 1}
UK X Cancel

As shown in the figure above, LIBRARY_1 is defined as LCD that means, we will define LCD
library which will be going to used in this tutorial and will be explained in the further steps.

Now Assuming that you know further steps regarding how to add your board which is already
explained in the previous tutorial (Making your own PLC work with LadderWORK) we will
skip to the library creation step, Providing you the help regarding the HDW file.

As we are not taking care of any other peripheral or port, so HDW file will be having a simple
SOC and EOC routines as shown.

##
Module : LCDTEST.hdw

Subject : LadderWORK® Evaluation Board
Update :10.2.2007

Company : MicroSHADOW Research (uS)
Author : Ajay Bhargav

##
##
##
##
RESOURCES
##
resources:
endresources
##
FUNCTIONS
##
functions
##
LWMAIN

H#

function:[LWMAIN/LCDTEST,Class](void)
INCLUDE "KERNEL.INC"
INCLUDE "SFR8051.INC"
cseg

endfunction

##
OPENCYCLE
#i#t

function:[SOC/LCDTEST,Class](void)
cseg

H#
endfunction

##t

CLOSECYCLE
#it

function:[EOC/LCDTEST,Class](void)
cseg
endfunction

POSTINIT (Module PostInit)
function:[POSTINIT/LCDTEST,Class](empty)
endfunction;

SHUTDOWN (Module ShutDown)
function:[SHUTDOWN/LCDTEST,Class](empty)
endfunction;

end;

HH
HH

LCDTEST.hdw

HH
HH

Step 3: Writing Library for your LCD

As already said, we need to write routines to run our LCD. The basic functions or routines needed

are as follows

LCD Initialization
LCD Display Character
LCD Command

LCD Busy

LCD INITIALIZATION: This routine will initialize the LCD display sending few set of commands to

the LCD. We are assuming here in tutorial that the LCD used is a 2 lines and 16 character based
LCD, with 5x8 dots display.

LCD DisPLAY CHARACTER: This routine will display a single character on the LCD panel.

LCD COMMAND: This routine will send commands to the LCD.

LCD Busy: This routine is used to check if the LCD is ready to accept next command or data.

After defining these basic functions we will hook them to the LadderWORK APIs, hence our
library will now work along with the LadderWORK software.

Sample code used for the LCD Library is given below.

; Starting of code

include "sfr8o51.inc"

include "kernel.inc"

include "hmimmi.inc"

)

; Publics

b

public __scrclr

public __terminal_init

)

; Hooks

)

public __putchar

public __put_asciiz_code

public __put_asciiz_data

public __update

public __locate

; Display mapping

b

; P1.o-P1.7 .. Data

; P35 .. RS

;P34 .. RW

; P33 E

; START OF LCD ROUTINES
LCD_RS EQU p3.5
LCD_RW EQU p3.4
LCD_E EQU p3.3
LCD_DATA EQU P1

LCD_BUSY_FLAG EQU p17
__led_wait_busy:
setb LCD_BUSY_FLAG
clr LCD_RS
setb LCD RW

__WaitBusy:
clr LCD E
setb LCD _E
jb LCD_BUSY_FLAG,__WaitBusy
clr LCD E
clr LCD_RS
clr LCD_RW
ret

)

; LCD Command

)

_led_write_command:
lcall __lcd_wait_busy

)

; Place data

)

mov LCD_DATA,a

)

; Write

)

clr LCD_RW

b

; Select command register

)

clr LCD_RS

)

; Setup Time

)

nop

)

; E Pulse

setb LCD _E
nop

cr LCD_E
clr LCD_RS
clr LCD RW

ret

b

; LCD Data

)

_led_write_data:
lcall __lcd_wait_busy

M

; Place data

)

mov LCD DATA,a

)

; Select data register

M

setb LCD_RS

b

; Write

)

clr LCD_RW

_led locate:

map:

)

)

; Setup Time

)

nop

b

; E Pulse

setb LCD E
nop

cr LCD_E
clr LCD RS
clr LCD_ RW

ret

;5 led locate

)
b
)
)

b

ON ENTRY :

R7 =X Coord
R6 =Y Coord

mov a,r6
lcall __map
add a,ry

; This prevent invalid commands o display

; Address setting is [1][A][A][A][A][A][A][A]

; No other command can be detected by module
; if the bit#7 is one

orl a,#8oh
Icall _ led_write_command
ret

inca

movc a,@a+pc
ret

db 08oh

db ocoh

db 094h
db od4h
ret

)

; LCD Initialization

b

_led_init:
mov a,#38H
Icall _ led write_command
mov a,#ocH
Icall _ lcd_write_command
mov a,#o1H
lcall _ lcd_write_command
mov a,#06H
Icall _ led write_command
mov a,#80H
Icall _ lcd_write_command
ret

; Clear LCD
__scrclr:

mov a,#oi1H
Icall lcd write_command
ret

__terminal_init:

Icall _ led_init
ret

)

; Hooks

)

__update:
ret

__locate:
Icall _ lcd locate
ret

__put_asciiz_code:
cra
movc a,@a+dptr
jz __eos_code
Icall _led write_data
inc dptr
sjmp __put_asciiz_code

__eos_code:
ret

__put_asciiz_data:
movx a,@dptr
jz __eos_data
Icall __led write_data

inc dptr

sjmp __put_asciiz_data
__eos_data:

ret
__putchar:

Icall _led write_data
ret

Assembling:
To assemble our code we are using USASMs51 kit. To make our work simple we can write a bat file
and with required files to be created. So an example bat file is given below.

Note4: To create a bat file open notepad, put list of instructions and save the file as “lcd.bat”
"C:\usmsikit\USASMs51.EXE" -L -oobj hmi.so1
"C:\usmz1kit\USLIB.EXE" -a'HMI.Uo1' LCDI.LIB

Now simply run the bat file and you will get the library file with name “LCDL.LIB”. Copy this
library file into your LadderWORK “lib” folder.

Notes: As we will use external data memory so if you are creating library with your own name then

append the library name with letter “L” at the end as in above case we used “LCDL”

Now we need to test our LCD.

Step 4: Using LCD in LadderWORK

Now we will create a simple project to test the working of LCD.

Now set the Counter with the maximum count you want and set the clock frequency to required
value. For instance we are using 1Hz of frequency and up counter from 1 to 9.

Display setup is made as shown in the diagram below.

Mode: Probe

Display As: Dec (decimal)

Number Format: Left Aligned

Data type: Boolean

X &Y Coordinate: o

Field Length: 3

Assert and N-Assert message: Value= (you can change it to whatever you want)

Now press ok! To exit the display setup menu.

Now we need to edit the system edit configuration, as shown below.

[Ewort | [mport |

Current Configuration Available 170 Modules

| Module# Name Descriptior MName Descp
. f5a1 LCDTEST GEMNERIC £ I5LCOTEST LCD test Board
@ MEOOLE BOOL % 8 memory module

@ MBOOL16 BOOL = 16 memory module
€| [} b

1l

Module Configuration

/O Name Reference Type Dir Polarity Enab

|4 (i SREY it I

Reference Mame [| Phisical Address | Walue |

Comment |

Direction Palarnty Enable

|| |advanced Settings >>>

After adding the LCD module, we need to edit the compiler configuration (compiler configuration
can change according to your board).

Options compiler- - = = = oo s e s e e -)
Code Generationitinker|Files., [MODBUS(R) Kemell Profiles
¢ Profile names
| 8051 Memory System Clock

|DEFALILT 2051 EXT RAM |

) Internal @) External Frequency (MHz)
I Import] I Update] I Remove]
Temporary Node Memory Syncronism Node Memory
@ Always use 8051 Internal Memony Always use 2051 Internal Memory BE{I‘?A{ELT 2051 EXT RAM
Timing Precigion Auto Sync Before N-Wayz Node
> @ Medum () D on @ Off
Auto Debounce After Phisical input Aszsumes default for hanged inputs
) @ Off © 0on @ Off

Now click on linker tab to set the code space and data space for External RAM.

Options compiler” & @ & CHEGEEEENGEEEEE . EREEEREGEee E w ﬁ
Code Generatior, Linker Files.. [MODBUS(R) Kernel| Profiles:
I 5 Profile name
L L Code

|DEFAIJLT 8051 EXT RAM [

Code offset (Hex) | 0| Code limit (Hex.} | 1FFF

’ Import H Update ” Remove l

Internal data

: : = h Default
Data offset (Hex.) | 10 . Data limit (Hex.) | 7F DEFAIILT 2057 EXT Rak
External data
Data offeet (Hex) | 2000 5 Data fimit (Hex.) | 3FFF
Stack Optimizer
Stack size (Hex) | 30 [@] Jump optimizing

Note6: Please DO NOT FORGET TO INCREASE THE STACK SIZE to 30 or higher value.

Now we are done. Simply compiler the project. Burn the Hex file on your controller and Check
the LCD. You will see count going from 1 to g as...

“Value=1"

“Value= 2”

»

“Value= 3

»

“Value= 4
“Value= 5"

“Value= 6"

»

“Value= 7

“Value= 8”

»

“Value= 9

I hope this tutorial provided you enough information on what is to be done to make your HMI
peripheral work with LadderWORK.

